A Preliminary Study on the Utilization of Hyperspectral Imaging for the On-Soil Recognition of Plastic Waste Resulting from Agricultural Activities

Author:

Bonifazi Giuseppe12ORCID,Francesconi Eleuterio1,Gasbarrone Riccardo1ORCID,Palmieri Roberta1ORCID,Serranti Silvia12ORCID

Affiliation:

1. Department of Chemical Engineering, Materials and Environment, Sapienza-University of Rome, Via Eudossiana 18, 00184 Rome, Italy

2. Research Center for Biophotonics, Sapienza-University of Rome, Polo Pontino, Corso della Repubblica 79, 04100 Latina, Italy

Abstract

Plastic in agriculture is frequently used to protect crops and its use boosts output, enhances food quality, contributes to minimize water consumption, and reduces the environmental impacts of agricultural activities. On the other hand, end-of-life plastic management and disposal are the main issues related to their presence in this kind of environment, especially in respect of plastic degradation, if not properly handled (i.e., storage places directly in contact with the ground, exposure of stocks to meteoric agents for long periods, incorrect or incomplete removal). In this study, the possibility of using an in situ near infrared (NIR: 1000–1700 nm) hyperspectral imaging detection architecture for the recognition of various plastic wastes in agricultural soils in order to identify their presence and also assess their degradation from a recovery/recycling perspective was explored. In more detail, a Partial Least Squares—Discriminant Analysis (PLS-DA) classifier capable of identifying plastic waste from soil was developed, implemented, and set up. Results showed that hyperspectral imaging, in combination with chemometric approaches, allows the utilization of a rapid, non-destructive, and non-invasive analytical approach for characterizing the plastic waste produced in agriculture, as well as the potential assessment of their lifespan.

Funder

Extended Partnership (EP) RETURN—multi-Risk sciEnce for resilienT commUnities undeR a changiNg climate

National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.3

European Union NextGenerationEU

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3