Effect of Insulation on the Performance of a Rotary Bioreactor for Composting Agricultural Residues

Author:

Alkoaik Fahad,Abdel-Ghany Ahmed,Al-Helal Ibrahim,Rashwan Mohamed,Fulleros Ronnel,Ibrahim Mansour

Abstract

Rotary drum composters are used to produce high-quality, pathogen-free compost without weed seeds. Insulation is usually applied to small-scale composters to warm up the composted materials and enhance metabolic reactions to produce stable and mature compost within a short time. However, the relationship between the composter size and the heat loss rate is still unclear. In this study, the relationship between the composter size (designated as the ratio of surface area to volume, As/V) and heat loss was analyzed and identified. To show the effect of insulation on the composting performance, two identical rotary drum bioreactors (each of As/V = 9) were used to compost tomato plant residues, one insulated and the other kept without insulation. Results showed that insulation increased the overall resistance against heat loss from the bioreactor from 0.37 (m2 °C W−1) to 1.12 (m2 °C W−1), quickly increasing the compost temperature, and a temperature of 55–67 °C could be achieved and remained for three days. Therefore, mature, stable, well-aged, and high-quality compost was obtained. In the non-insulated bioreactor, the compost temperature did not exceed 37 °C; this caused a decline of microbial activity and the composting process temperature was only in the mesophilic range, leading to a high risk of the existence of weed seeds and pathogens in the final immature compost. Insulation is necessary for laboratory-scale and small pilot-scale bioreactors (As/V ≥ 6), because heat loss is high as As/V is high, whereas it is not necessary for commercial full-scale bioreactors (As/V ≤ 4), because heat loss is minor as As/V is low. For larger pilot-scale bioreactors (As/V: 4–6), insulation cost must be considered when comparing the impact of energy saving on the composting process.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference25 articles.

1. An overview of the influence of sustainable agricultural systems on plant diseases

2. Diversity of composting systems;Steinford,1993

3. Mixed organic waste composting using rotary drum composter;Ajay;Int. J. Environ. Waste Manag.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3