IoT Botnet Attack Detection Based on Optimized Extreme Gradient Boosting and Feature Selection

Author:

Alqahtani MnahiORCID,Mathkour Hassan,Ben Ismail Mohamed Maher

Abstract

Nowadays, Internet of Things (IoT) technology has various network applications and has attracted the interest of many research and industrial communities. Particularly, the number of vulnerable or unprotected IoT devices has drastically increased, along with the amount of suspicious activity, such as IoT botnet and large-scale cyber-attacks. In order to address this security issue, researchers have deployed machine and deep learning methods to detect attacks targeting compromised IoT devices. Despite these efforts, developing an efficient and effective attack detection approach for resource-constrained IoT devices remains a challenging task for the security research community. In this paper, we propose an efficient and effective IoT botnet attack detection approach. The proposed approach relies on a Fisher-score-based feature selection method along with a genetic-based extreme gradient boosting (GXGBoost) model in order to determine the most relevant features and to detect IoT botnet attacks. The Fisher score is a representative filter-based feature selection method used to determine significant features and discard irrelevant features through the minimization of intra-class distance and the maximization of inter-class distance. On the other hand, GXGBoost is an optimal and effective model, used to classify the IoT botnet attacks. Several experiments were conducted on a public botnet dataset of IoT devices. The evaluation results obtained using holdout and 10-fold cross-validation techniques showed that the proposed approach had a high detection rate using only three out of the 115 data traffic features and improved the overall performance of the IoT botnet attack detection process.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3