A Single-Fed Multiband Antenna for WLAN and 5G Applications

Author:

Khan Zakir,Memon Muhammad HunainORCID,Rahman Saeed UrORCID,Sajjad MuhammadORCID,Lin Fujiang,Sun Liguo

Abstract

In this paper, a slotted conical patch connected to a small triangular patch multiband antenna for both microwave and millimeter-wave applications is presented. The designed antenna has three characteristics. The proposed antenna is a multiband, having a compact size of 0.35λ0 × 0.35λ0 × 0.004λ0 at its lowest operational frequency, i.e., 2.4 GHz, and more importantly, it can cover both the microwave and millimeter-wave bands with a single feeding. According to the −10 dB matching bandwidth, experimental results show that the antenna operates at (2.450–2.495) GHz, (5.0–6.3) GHz, and (23–28) GHz. The reduced size, simple design, and multiband large bandwidth are some of the advantages over the reported designs in the latest literature. Both simulated and experimental results show a good agreement, and the proposed antenna can be used for wireless local area network (WLAN) applications and fifth-generation (5G) wireless communication devices.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multi-Bandwidth Reconfigurable Patch Antenna for Devices in WLAN and UWB Technology Applications;Applied Sciences;2023-08-18

2. Flexible circle antenna for 5G system operating in 3.6 GHz band;PRZEGLĄD ELEKTROTECHNICZNY;2023-08-11

3. Triple-band antenna for GPS, Sub-6 GHz 5G and WLAN Wireless Applications;2023 IEEE Wireless Antenna and Microwave Symposium (WAMS);2023-06-07

4. Design of Quadruple Band Toyota Logo Shaped Monopole Micro-Strip Antenna;2023 3rd International Conference on Pervasive Computing and Social Networking (ICPCSN);2023-06

5. Design of a Compact, Dual-band, and Single-Fed Patch Antenna for 5G Applications;2023 5th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE);2023-03-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3