Motion Inference Using Sparse Inertial Sensors, Self-Supervised Learning, and a New Dataset of Unscripted Human Motion

Author:

Geissinger Jack H.ORCID,Asbeck Alan T.ORCID

Abstract

In recent years, wearable sensors have become common, with possible applications in biomechanical monitoring, sports and fitness training, rehabilitation, assistive devices, or human-computer interaction. Our goal was to achieve accurate kinematics estimates using a small number of sensors. To accomplish this, we introduced a new dataset (the Virginia Tech Natural Motion Dataset) of full-body human motion capture using XSens MVN Link that contains more than 40 h of unscripted daily life motion in the open world. Using this dataset, we conducted self-supervised machine learning to do kinematics inference: we predicted the complete kinematics of the upper body or full body using a reduced set of sensors (3 or 4 for the upper body, 5 or 6 for the full body). We used several sequence-to-sequence (Seq2Seq) and Transformer models for motion inference. We compared the results using four different machine learning models and four different configurations of sensor placements. Our models produced mean angular errors of 10–15 degrees for both the upper body and full body, as well as worst-case errors of less than 30 degrees. The dataset and our machine learning code are freely available.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference66 articles.

1. Decomposing biological motion: A framework for analysis and synthesis of human gait patterns;Troje;J. Vis.,2002

2. Documentation Mocap Database HDM05;Müller,2007

3. Guide to the Carnegie Mellon University Multimodal Activity (CMU-MMAC) Database;De la Torre,2009

4. Human3.6M: Large scale datasets and predictive methods for 3D human sensing in natural environments;Ionescu;IEEE Trans. Pattern Anal. Mach. Intell.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3