The Influence of Gel Preparation and Thermal Treatment on the Optical Properties of SiO2-ZnO Powders Obtained by Sol–Gel Method

Author:

Mocioiu Oana-CătălinaORCID,Vlăduț Cristina Maria,Atkinson IrinaORCID,Brătan Veronica,Mocioiu Ana-Maria

Abstract

The effect of gel preparation and heat treatment on the structural and optical properties of SiO2-ZnO materials prepared by the sol–gel method was investigated. Zinc acetate dehydrate, TEOS (tetraethylortosilicate), ethanol, distillated water and HCl were used as a starting material, solvent and catalyst, respectively. Four powders (G1–G4) were prepared in different ways from the starting materials mentioned above. The method of adding Zn precursors during the synthesis differed from one another. For the G1 synthesis, only Zn acetate powder was employed; for the G2 synthesis, Zn acetate was dissolved in distilled water; and for the G3 synthesis, Zn acetate was dissolved in ethanol. When synthesizing G4, TEOS was added last, after Zn acetate had been combined with water and ethanol. The SiO2-ZnO materials were dried at 200 °C and then heat-treated at 700 °C and 900 °C. All samples were investigated by X-ray diffraction and infrared spectroscopy in order to investigate their structure. SEM measurements were performed to investigate the morphology of materials. Optical properties were influenced by gel preparation and heat treatments. A reflectance of over 60% was obtained for G3 and G4 powders, while for G1 and G2, the reflectance was below 30%. In conclusion, synthesis steps and heat treatment can control the structure and properties of the powders.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3