Development of Nanogel Loaded with Lidocaine for Wound-Healing: Illustration of Improved Drug Deposition and Skin Safety Analysis

Author:

Ali AmenaORCID,Ali AbuzerORCID,Rahman Mohammad AkhlaquerORCID,Warsi Musarrat Husain,Yusuf MohammadORCID,Alam Prawez

Abstract

A wound refers to a cut or blow that may result in primary or secondary infection or even death, if untreated. In the current study, we have explored the wound-healing properties of lidocaine nanogel, owing to its antioxidant and neutrophilic modulatory potential. Initially, the pre-formulation study was performed and then using central composite design (CCD) fabrication and the characterization of lidocaine-loaded nanoemulsion was carried out. After the preparation of a nanogel of lidocaine-loaded nanoemulsion, it was evaluated on various parameters, such as pH, spreadability, extrudability, drug content, in vitro drug release, dermatokinetic study and in vivo skin safety. Based on the pre-formulation study, the maximum solubility of lidocaine was found in oleic acid (324.41 ± 4.19 mg/mL) and in Tween 20 (192.05 ± 8.25 mg/mL), selected as a suitable emulsifier. The refractive index of the optimized nanoemulsion was found to be 1.35 ± 0.04, the electrokinetic potential was recorded as −15.47 ± 0.95 mV. The pH, spreadability and extrudability of nanogel was found to be 6.87 ± 0.51, 73.32 ± 4.59 gm.cm/sec and 107.41 ± 6.42 gm/cm2, respectively. The percentage of the cumulative drug content and drug release from nanogel was found to be 99.94 ± 1.70% and 93.00 ± 4.67%, respectively. Moreover, dermatokinetic study showed significantly (p < 0.0005) improved drug deposition and the in vivo skin safety study showed no sign of dermal erythematous lesion or any visible damage. Stability studies also testified the secureness of nanogel after storage in a prescribed environmental condition. Thus, this study provides substantial evidence for healing wounds effectively and the further evaluation of the in vivo model. The patent related to this work was published in the Indian Official Journal of the Patent Office (Issue number: 20/2022).

Funder

Taif University

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3