Advances in 3D Gel Printing for Enzyme Immobilization

Author:

Shen JialongORCID,Zhang Sen,Fang Xiaomeng,Salmon SonjaORCID

Abstract

Incorporating enzymes with three-dimensional (3D) printing is an exciting new field of convergence research that holds infinite potential for creating highly customizable components with diverse and efficient biocatalytic properties. Enzymes, nature’s nanoscale protein-based catalysts, perform crucial functions in biological systems and play increasingly important roles in modern chemical processing methods, cascade reactions, and sensor technologies. Immobilizing enzymes on solid carriers facilitates their recovery and reuse, improves stability and longevity, broadens applicability, and reduces overall processing and chemical conversion costs. Three-dimensional printing offers extraordinary flexibility for creating high-resolution complex structures that enable completely new reactor designs with versatile sub-micron functional features in macroscale objects. Immobilizing enzymes on or in 3D printed structures makes it possible to precisely control their spatial location for the optimal catalytic reaction. Combining the rapid advances in these two technologies is leading to completely new levels of control and precision in fabricating immobilized enzyme catalysts. The goal of this review is to promote further research by providing a critical discussion of 3D printed enzyme immobilization methods encompassing both post-printing immobilization and immobilization by physical entrapment during 3D printing. Especially, 3D printed gel matrix techniques offer mild single-step entrapment mechanisms that produce ideal environments for enzymes with high retention of catalytic function and unparalleled fabrication control. Examples from the literature, comparisons of the benefits and challenges of different combinations of the two technologies, novel approaches employed to enhance printed hydrogel physical properties, and an outlook on future directions are included to provide inspiration and insights for pursuing work in this promising field.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Reference101 articles.

1. Industrial Enzymes

2. Carrier-Bound Immobilized Enzymes: Principles, Application and Design;Cao,2005

3. Understanding enzyme immobilisation

4. Enzyme-Catalyzed Solvents for CO2 Separation;Salmon,2015

5. Application of immobilized enzyme technologies for the textile industry: a review

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3