Abstract
Multifunctional polymer composite gels have attracted attention because of their high thermal stability, conductivity, mechanical properties, and fast optical response. To enable the simultaneous incorporation of all these different functions into composite gels, the best doping material alternatives are two-dimensional (2D) materials, especially transition metal dichalcogenides (TMD), which have been used in so many applications recently, such as energy storage units, opto-electronic devices and catalysis. They have the capacity to regulate optical, electronic and mechanical properties of basic molecular hydrogels when incorporated into them. In this study, 2D materials (WS2, MoS2 and MoSe2)-doped polyacrylamide (PAAm) gels were prepared via the free radical crosslinking copolymerization technique at room temperature. The gelation process and amount of the gels were investigated depending on the optical properties and band gap energies. Band gap energies of composite gels containing different amounts of TMD were calculated and found to be in the range of 2.48–2.84 eV, which is the characteristic band gap energy range of promising semiconductors. Our results revealed that the microgel growth mechanism and gel point of PAAm composite incorporated with 2D materials can be significantly tailored by the amount of 2D materials. Furthermore, tunable band gap energies of these composite gels are crucial for many applications such as biosensors, cartilage repair, drug delivery, tissue regeneration, wound dressing. Therefore, our study will contribute to the understanding of the correlation between the optical and electronic properties of such composite gels and will help to increase the usage areas so as to obtain multifunctional composite gels.
Subject
Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献