Simulated Investigation in Wormhole Expansion Law of Gelling Acid Etching and Its Influencing Factors in Deep Carbonate Reservoirs

Author:

Wang Mingwei,Zhou Wen,Li Song,Wu Wen

Abstract

Acidizing with gelling acid is the key technology in developing a carbonate reservoir successfully. It is difficult for the laboratory to carry out the radial displacement experiment with a large rock core. It is necessary to establish the gelling acid wormhole expansion model under the radial conditions, simulate the gelling acid wormhole expansion law under the radial conditions, optimize the construction parameters, and provide the basis for the optimal design of carbonate reservoir matrix acidizing. The research objective is to simulate the gelling acid etching wormhole expansion in a deep carbonate reservoir and make clear its influencing factors, which are helpful for reservoir stimulation. The mathematical model of gelling acid wormhole expansion was established, considering the influence of pore microscopic characteristics on acid flow and acid rock reaction. The simulation results indicated that viscosity, surface reaction rate, and hydrogen ion diffusion coefficient have different effects on gelling acid etching wormhole. The spatial distribution of pores determines the trend of gelling acid solution and thus the shape of the armhole. Perforation completion has a significant impact on the expansion of gelling acid etching wormhole. The wormhole extends forward along the perforation hole, and perforation increases the length of the wormhole. This wormhole expansion law is very suitable in situations where a deep carbonate reservoir is needed for gelling acid fracturing.

Funder

NSFC of China: Study on dynamic characteristics of methane/carbon dioxide in shale heterogeneous reservoir under multi-field coupling

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3