Abstract
The aerostatic spindle in the ultra-precision machine tool shows the complex multi-field coupling dynamics behavior under working condition. The numerical investigation helps to better understand the dynamic characteristics of the aerostatic spindle and improve its structure and performance with low cost. A multi-field coupling 5-DOF dynamics model for the aerostatic spindle is proposed in this paper, which considers the interaction between the air film, spindle shaft and the motor. The restoring force method is employed to deal with the times varying air film force, the transient Reynolds equation of the aerostatic journal bearing and the aerostatic thrust bearing is solved using ADI method and Thomas method. The transient air film pressure of aerostatic bearings is obtained which clearly presents the influence induced by the tilt motion of the spindle shaft. The motion trajectory of the spindle shaft is obtained which shows different stability of the shaft under different external forces. The dynamics model shows good performance on simulating the multi-field coupling behavior of the aerostatic spindle under external force. which is quite meaningful and useful for the further research on the dynamic characteristics of the aerostatic spindle.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Provincial Universities of Zhejiang
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献