Abstract
In this paper, a transmissive color filter with an ultra-narrow full width at half of the maximum is proposed. Exploiting a material with a high index of refraction and an extremely low extinction coefficient in the visible range allows the quality factor of the filter to be improved. Three groups of GaP/SiO2 pairs are used to form a Distributed Brag reflector in a symmetrical Fabry-Pérot cavity. A band-pass filter which is composed of ZnS/SiO2 pairs is also introduced to further promote the purity of the transmissive spectrum. The investigation manifests that a series of tuned spectrum with an ultra-narrow full width at half of the maximum in the full visible range can be obtained by adjusting the thickness of the SiO2 interlayer. The full width at half of the maximum of the transmissive spectrum can reach 2.35 nm. Simultaneously, the transmissive efficiency in the full visible range can keep as high as 0.75. Our research provides a feasible and cost-effective way for realizing filters with ultra-narrowed linewidth.
Funder
the National Key Research and Development Program
the National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献