Spark Analysis Based on the CNN-GRU Model for WEDM Process

Author:

Liu Changhong,Yang Xingxin,Peng Shaohu,Zhang Yongjun,Peng LingxiORCID,Zhong Ray Y.

Abstract

Wire electrical discharge machining (WEDM), widely used to fabricate micro and precision parts in manufacturing industry, is a nontraditional machining method using discharge energy which is transformed into thermal energy to efficiently remove materials. A great amount of research has been conducted based on pulse characteristics. However, the spark image-based approach has little research reported. This paper proposes a discharge spark image-based approach. A model is introduced to predict the discharge status using spark image features through a synchronous high-speed image and waveform acquisition system. First, the relationship between the spark image features (e.g., area, energy, energy density, distribution, etc.) and discharge status is explored by a set of experiments). Traditional methods have claimed that pulse waveform of “short” status is related to the status of non-machining while through our research, it is concluded that this is not always true by conducting experiments based on the spark images. Second, a deep learning model based on Convolution neural network (CNN) and Gated recurrent unit (GRU) is proposed to predict the discharge status. A time series of spark image features extracted by CNN form a 3D feature space is used to predict the discharge status through GRU. Moreover, a quantitative labeling method of machining state is proposed to improve the stability of the model. Due the effective features and the quantitative labeling method, the proposed approach achieves better predict result comparing with the single GRU model.

Funder

the Science and Technology Planning Project of Guangdong Province

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3