Autotoxicity Hinders the Natural Regeneration of Cinnamomum migao H. W. Li in Southwest China

Author:

Huang Xiaolong,Chen Jingzhong,Liu Jiming,Li Jia,Wu Mengyao,Tong Bingli

Abstract

Autotoxicity is a widespread phenomenon in nature and is considered to be the main factor affecting new natural recruitment of plant populations, which was proven in many natural populations. Cinnamomum migao H. W. Li is an endemic medicinal woody plant species mainly distributed in Southwestern China and is defined as an endangered species by the Red Paper of Endangered Plants in China. The lack of seedlings is considered a key reason for population degeneration; however, no studies were conducted to explain its causes. C. migao contains substances with high allelopathic potential, such as terpenoids, phenolics, and flavonoids, and has strong allelopathic effects on other species. Therefore, we speculate that one of the reasons for C. migao seedling scarcity in the wild is that it exhibits autotoxic allelopathy. In this study, which was performed from the perspective of autotoxicity, we collected leaves, pericarp, seeds, and branches of the same population; we simulated the effects of decomposition and release of litter from these different anatomical parts of C. migao in the field; and we conducted 210-day control experiments on seedling growth, with different concentration gradients, using associated aqueous extracts. The results showed that the leaf aqueous extract (leafAE) significantly inhibited growth indicators and increased damage of the lipid structure of the cell membrane of seedlings, suggesting that autotoxicity from C. migao is a factor restraining seedling growth. The results of the analyses of soil properties showed that, compared with the other treatments, leafAE treatment inhibited soil enzyme activity and also had an impact on soil fungi. Although leafAE could promote soil fertility to some extent, it did not change the effect of autotoxic substances on seedling growth. We conclude that autotoxicity is the main obstacle inhibiting seedling growth and the factor restraining the natural regeneration of C. migao.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3