QuietPlace: An Ultrasound-Based Proof of Location Protocol with Strong Identities

Author:

Kounas Dimitrios,Voutyras Orfefs,Palaiokrassas GeorgiosORCID,Litke AntoniosORCID,Varvarigou Theodora

Abstract

Location-based services are becoming extremely popular due to the widespread use of smartphones and other mobile and portable devices. These services mainly rely on the sincerity of users, who can spoof the location they report to them. For applications with higher security requirements, the user should be unable to report a location different than the real one. Proof of Location protocols provide a solution to secure localization by validating the device’s location with the help of nearby nodes. We propose QuietPlace, a novel protocol that is based on ultrasound and provides strong identities, proving the location of the owner of a device, without exposing though their identity. QuietPlace provides unforgeable proof that is able to resist to various attacks while respecting the users’ privacy. It can work regardless of certificate authority and location-based service and is able to support trust schemas that evaluate the participants’ behavior. We implement and validate the protocol for Android devices, showing that ultrasound-based profiles offer a better performance in terms of maximum receiving distance than audible profiles, and discuss its strengths and weaknesses, making suggestions about future work.

Funder

H2020 Leadership in Enabling and Industrial Technologies

Publisher

MDPI AG

Subject

Artificial Intelligence,Applied Mathematics,Industrial and Manufacturing Engineering,Human-Computer Interaction,Information Systems,Control and Systems Engineering

Reference37 articles.

1. FOAM Whitepaper. 5 January 2018 https://foam.space/publicAssets/FOAM_Whitepaper.pdf

2. Applaus: A privacy-preserving location proof updating system for location-based services;Zhu,2011

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3