Exogenous NAD+ Stimulates MUC2 Expression in LS 174T Goblet Cells via the PLC-Delta/PTGES/PKC-Delta/ERK/CREB Signaling Pathway

Author:

Ma SeonghoORCID,Yeom JiahORCID,Lim Young-HeeORCID

Abstract

Background: MUC2, a major component of the mucus layer in the intestine, is associated with antimicrobial activity and gut immune system function. Currently, mucin is mainly known for its critical function in defense against toxic molecules and pathogens. In this study, we investigated the stimulatory effects of exogenous nicotinamide adenine dinucleotide (NAD+) on the expression of MUC2 in LS 174T goblet cells. Methods: Genes related to MUC2 synthesis were measured by quantitative real-time PCR (qPCR). To analyze the gene expression profiles of NAD+-treated LS 174T goblet cells, RNA sequencing was performed. MUC2 expression in the cells and secreted MUC2 were measured by immunocytochemistry (ICC) and ELISA, respectively. Results: NAD+ significantly stimulated MUC2 expression at mRNA and protein levels and increased the secretion of MUC2. Through RNA sequencing, we found that the expression of genes involved in arachidonic acid metabolism increased in NAD+-treated cells compared with the negative control cells. NAD+ treatment increased phospholipase C (PLC)-δ and prostaglandin E synthase (PTGES) expression, which was inhibited by the appropriate inhibitors. Among the protein kinase C (PKC) isozymes, PKC-δ was involved in the increase in MUC2 expression. In addition, extracellular signal-regulated kinase (ERK)1/2 and cyclic AMP (cAMP) response element-binding protein (CREB) transcript levels were higher in NAD+-treated cells than in the negative control cells, and the enhanced levels of phosphorylated CREB augmented MUC2 expression. Conclusions: Exogenous NAD+ increases MUC2 expression by stimulating the PLC-δ/PTGES/PKC-δ/ERK/CREB signaling pathway.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3