Bacopa monnieri and Their Bioactive Compounds Inferred Multi-Target Treatment Strategy for Neurological Diseases: A Cheminformatics and System Pharmacology Approach

Author:

Jeyasri RajendranORCID,Muthuramalingam PandiyanORCID,Suba Vellaichami,Ramesh ManikandanORCID,Chen Jen-TsungORCID

Abstract

Neurological diseases (NDs), especially Alzheimer’s and Spinocerebellar ataxia (SCA), can severely cause biochemical abnormalities in the brain, spinal cord and other nerves of human beings. Their ever-increasing prevalence has led to a demand for new drug development. Indian traditional and Ayurvedic medicine used to combat the complex diseases from a holistic and integrative point of view has shown efficiency and effectiveness in the treatment of NDs. Bacopa monnieri is a potent Indian medicinal herb used for multiple ailments, but is significantly known as a nootropic or brain tonic and memory enhancer. This annual herb has various active compounds and acts as an alternative and complementary medicine in various countries. However, system-level insights of the molecular mechanism of a multiscale treatment strategy for NDs is still a bottleneck. Considering its prominence, we used cheminformatics and system pharmacological approaches, with the aim to unravel the various molecular mechanisms represented by Bacopa-derived compounds in identifying the active human targets when treating NDs. First, using cheminformatics analysis combined with the drug target mining process, 52 active compounds and their corresponding 780 direct receptors were retrieved and computationally validated. Based on the molecular properties, bioactive scores and comparative analysis with commercially available drugs, novel and active compounds such as asiatic acid (ASTA) and loliolide (LLD) to treat the Alzheimer’s and SCA were identified. According to the interactions among the active compounds, the targets and diseases were further analyzed to decipher the deeper pharmacological actions of the drug. NDs consist of complex regulatory modules that are integrated to dissect the therapeutic effects of compounds derived from Bacopa in various pathological features and their encoding biological processes. All these revealed that Bacopa compounds have several curative activities in regulating the various biological processes of NDs and also pave the way for the treatment of various diseases in modern medicine.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3