Cross-Linked Cationic Starch Microgranules for Removal of Diclofenac from Aqueous Systems

Author:

Navikaite-Snipaitiene Vesta1ORCID,Andriunaite Paulina1,Rosliuk Deimante1,Rutkaite Ramune1

Affiliation:

1. Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Rd. 19, LT-50254 Kaunas, Lithuania

Abstract

The occurrence of pharmaceuticals, such as anti-inflammatories, antibiotics, antidepressants, antihistamines, and others in the effluents, is a very urgent problem and a big challenge for municipal wastewater treatment companies. Without special treatment, these microcontaminants are retained in discharged water and sewage sludge and this is a high threat to the environment. Cross-linked cationic starch (CLCS) adsorbents with various degrees of substitution (DS) of cationic groups were employed for the removal of diclofenac from aqueous systems. The equilibrium adsorption studies revealed that the driving force of adsorption was the electrostatic interaction between carboxylate groups of diclofenac and quaternary ammonium groups of CLCS. The sorption capacities of CLCS with DS of 0.21 (CLCS-0.21) and DS of 0.33 (CLCS-0.33) varied from 329 to 370 mg/g and from 597 to 684 mg/g, respectively. The release studies revealed that adsorbed diclofenac can be efficiently released into 0.25 mol/L NaCl solution. Adsorbent regeneration studies showed that after four regeneration cycles, the ability of CLCS-0.21 and CLCS-0.33 to remove diclofenac from the aqueous medium decreased by 6% and 3%, respectively. To conclude, CLCS-0.33 exhibited high absorption capacity and sustainability due to good recoverability properties and can be regarded as a promising microcontaminant adsorbent to be used in wastewater treatment processes.

Funder

Research, Development, and Innovation Fund of Kaunas University of Technology

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference66 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3