Study on Cavitation of Port Plate of Seawater Desalination Pump with Energy Recovery Function

Author:

Li Wenlei1,Guo Rui1ORCID,Wang Guogang2,Zhao Jingyi1ORCID,Zhang Qian3,Yu Lin2,Zhang Qisheng1

Affiliation:

1. School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China

2. Yongchunjie Seawater Desalination Technology Engineering Co., Ltd., Qinhuangdao 066004, China

3. The Institute of Seawater Desalination and Multipurpose Utilization, Tianjin 300192, China

Abstract

To address the problem of low integration and efficiency of reverse osmosis desalination system, an energy-recovery type incurve multiple acting pump is developed with integrated functions of a high-pressure pump, energy recovery device and booster pump. In order to determine its flow range and suppress cavitation generation, a mathematical model of the port plate is established, combining the realizable k-ɛ turbulence model and the Schnerr-Sauer cavitation model to obtain the internal flow field characteristics of the port plate. The effects of different rotational speeds and inlet pressures on cavitation were analyzed to obtain the gas volume fraction distribution rules. The design is based on the pressure and mass flow monitoring test device to verify the numerical calculation results. The results show that the experimental and simulation data match accurately, and with the increase in speed and the decrease in inlet pressure, the cavitation phenomenon becomes serious and the flow coefficient is reduced. The optimal working speed of the pump in this paper is 520 r/min and the output flow is 200 L/min. Compared with conventional products, the volume is reduced by more than 40%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3