Experimental Study of Acid Etching and Conductivity of High-Temperature-Resistant Cross-Linked Acid

Author:

Lin Hai1,Hou Tengfei2,Wang Fuguo3,Yue Long4,Liu Shiduo1,Yuan Guide3,Wang Guoqing3,Liu Yong1,Wang Qing5ORCID,Zhou Fujian5

Affiliation:

1. Drilling and Production Technology Research Institute, PetroChina Qinghai Oilfield Company, Beijing 816400, China

2. CNPC Engineering Technology R&D Company Limited, Beijing 102206, China

3. The Exploration Enterprise Department of Qinghai Oilfield Company, Dunhuang 816401, China

4. Engineering and Technology Department of Qinghai Oilfield Company, Dunhuang 816401, China

5. State Key Laboratory of Oil and Gas Resources and Prospecting, China University of Petroleum, Beijing 102249, China

Abstract

Acid fracturing is one of the effective techniques for developing low-permeability carbonate reservoirs economically. With the increasing reservoir depth, the reservoir temperature and closure pressure increase, posing new challenges to the acid system. In this paper, a high-temperature-resistant cross-linked acid system is selected, which maintains a viscosity above 80 mPa·s in the temperature range of 120 °C to 140 °C and can effectively reduce acid leak-off. The acid system can not only open the reservoir and ensure the extension of the fracture, but also reduce the reaction rate between the acid and the reservoir and increase the etching distance. The rock slab acid etching and conductivity tests show that the optimum injection rate is 50 mL/min, the rock etching morphology is channel type, and the conductivity remains above 110 D·cm. However, as the acid concentration decreases, the rock slab conductivity decreases considerably, especially at 10% acid concentration, where the closure pressure rises to 15 MPa, and there is almost no conductivity. In particular, after the acid system is broken, the reacted acid can form a filter cake on the core surface, hindering further intrusion of the residue into the core and reducing reservoir damage. The study shows that high-temperature-resistant cross-linked acid systems can effectively improve the stimulation of deeply fractured carbonate reservoirs at high temperatures.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3