A Knowledge-Based Cooperative Differential Evolution Algorithm for Energy-Efficient Distributed Hybrid Flow-Shop Rescheduling Problem

Author:

Di Yuanzhu1,Deng Libao1ORCID,Liu Tong2

Affiliation:

1. School of Information Science and Engineering, Harbin Institute of Technology, Weihai 264209, China

2. College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou 310018, China

Abstract

Due to the increasing level of customization and globalization of competition, rescheduling for distributed manufacturing is receiving more attention. In the meantime, environmentally friendly production is becoming a force to be reckoned with in intelligent manufacturing industries. In this paper, the energy-efficient distributed hybrid flow-shop rescheduling problem (EDHFRP) is addressed and a knowledge-based cooperative differential evolution (KCDE) algorithm is proposed to minimize the makespan of both original and newly arrived orders and total energy consumption (simultaneously). First, two heuristics were designed and used cooperatively for initialization. Next, a three-dimensional knowledge base was employed to record the information carried out by elite individuals. A novel DE with three different mutation strategies is proposed to generate the offspring. A local intensification strategy was used for further enhancement of the exploitation ability. The effects of major parameters were investigated and extensive experiments were carried out. The numerical results prove the effectiveness of each specially-designed strategy, while the comparisons with four existing algorithms demonstrate the efficiency of KCDE in solving EDHFRP.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province, China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3