Numerical Simulation of a Class I Gas Hydrate Reservoir Depressurized by a Fishbone Well

Author:

He Jiayuan1

Affiliation:

1. Sinopec Petroleum Exploration and Production Research Institute, Beijing 102206, China

Abstract

The results of the second trial production of the gas hydrate reservoir in the Shenhu area of the South China Sea show that the production of a gas hydrate reservoir by horizontal wells can greatly increase the daily gas production, but the current trial production is still far below the minimum production required for commercial development. Compared with a single horizontal well, a fishbone well has a larger reservoir contact area and is expected to achieve higher productivity in the depressurization development of gas hydrate reservoirs. However, there is still a lack of systematic research on the application of fishbone wells in Class I gas hydrate reservoirs. In this paper, a grid system for gas hydrate reservoirs containing fishbone wells is first established using the PEBI unstructured grid, and fine-grained simulation of reservoirs near the bottom of the wells is achieved by adaptive grid encryption while ensuring computational efficiency. On this basis, Tough + Hydrate software is adopted to simulate the productivity and physical field change of a fishbone well with different branching numbers. The results show that: the higher the number of branches in a fishbone well, the faster the free water production rate, reservoir depressurization, and free gas production rate in the initial stage of depressurization development, and the faster depressurization can effectively promote hydrate dissociation. Compared with a single horizontal well, the cumulative gas production of a six branch fishbone well can increase by 59.3%. Therefore, using multi-branch fishbone depressurization to develop Class I gas hydrate reservoirs can effectively improve productivity and the depressurization effect, but the hydrate dissociation will absorb a lot of heat and lead to a rapid decrease in reservoir temperature and hydrate dissociation rate. At the end of the simulation, the hydrate dissociation rate of all schemes was lower than 50%. In the later stage of depressurization development, the combined development method of heat injection and depressurization is expected to further provide sufficient thermal energy for hydrate dissociation and promote the dissociation of the hydrate.

Funder

China Petroleum and Chemical Corporatio

Sinopec Excellent Youth Innovation Fund Project

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3