Integrated Optimization for the Coupling Network of Refinery and Synthetic Plant of Chemicals

Author:

Yang Sen1,Zhang Qiao1,Feng Xiao1

Affiliation:

1. School of Chemical Engineering & Technology, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Synthetic plant of chemicals (SPC) consumes large amounts of hydrogen and carbon-oxides while refineries require high-purity hydrogen. Coal gasification (CG) and steam methane reforming (SMR) are common industrial hydrogen production technologies. Their gas products are essentially a mixture of H2, CO, and CO2. Therefore, such gas products can provide both syngas for SPC and concentrated hydrogen for refinery through appropriate allocation. Based on the composition complementation of gas products from CG and SMR for their efficient utilization, this paper proposed an integration methodology for refinery and SPC coupling networks to conserve both fossil fuel resources and carbon emissions. A superstructure is established as a problem illustration and a nonlinear programming model (NLP) is formulated as a mathematical solution. A case study is performed, and the results show that the coupling network integration can save 19.1% and 20.2% of coal and natural gas consumption, as well as corresponding carbon emission and operation costs.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3