Temperature and Thermal Stress Analysis of a Hot Blast Stove with an Internal Combustion Chamber

Author:

Park Donghwi1ORCID,Guo Feng1,Choi Jongrak1,Park Joo-Hyoung2,Kim Naksoo1ORCID

Affiliation:

1. Department of Mechanical Engineering, Sogang University, Seoul 04107, Republic of Korea

2. Energy Research Group, Research Institute of Industrial Science and Engineering (RIST), Pohang 37673, Republic of Korea

Abstract

In this study, the temperature and thermal stress fields of an internal combustion hot blast stove were calculated and analysed. Turbulent, species transport, chemical reaction, radiation, and porous media models were implemented in a computational fluid dynamics model. Thermal boundary conditions on the structure of the hot blast stove were calculated based on the analytic adiabatic Y-plus method. A method to interpolate the thermal boundary conditions to a finite element mesh was developed, and the boundary conditions were mapped through the proposed method. In the on-gas period, the vortex was generated in the dome, and it made the variation of the temperature field in the checker chamber. The maximum temperature of the flue gas reached 1841 K in the on-gas period. In the on-blast period, the flow was considerably even compared to the on-gas period, and the average blast temperature reached 1345 K. The outer region of the checker chamber is shown to be continuously exposed to a higher temperature, which makes the region the main domain in managing the deterioration of the refractory linings. The shell temperature did not change during the operation due to the lower thermal diffusivity of the refractory linings, where the inner surface of the refractory had a maximum temperature change from 1441 K to 1659 K. The maximum temperature of the shell was 418.4 K at the conical region of the checker chamber side. The conical region had the higher maximum and middle principal thermal stresses due to the presence of a large temperature gradient around the conical region, where the largest maximum and middle principal stresses were 300.6 MPa and 192.0 MPa, respectively. The conical region was found to be a significant area of interest where it had a higher temperature and thermal stress.

Funder

RIST (Research Institute of Industrial Science and Technology), Republic of Korea

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference46 articles.

1. Advances and researches on non destructive testing: A review;Dwivedi;Mater. Today Proc.,2018

2. Character of fracture of the shell metal of blast-furnace stoves;Gres;Metallurgist,1979

3. Intercrystalline Stress Corrosion-A Creeping Threat;Nugteren;IRON Steel Technol.,2006

4. Dome combustion hot blast stove for huge blast furnace;Zhang;J. Iron Steel Res. Int.,2012

5. Modelling and control of pollutant formation in blast stoves;Rieger;J. Clean. Prod.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3