Differential Thermal Evolution between Oil and Source Rocks in the Carboniferous Shale Reservoir of the Qaidam Basin, NW China

Author:

Wang Qianru,Huang Haiping,He Chuan,Li Zongxing

Abstract

Shale oil and source rock samples of the Carboniferous Keluke Formation from well Chaiye 2 in the Delingha Depression were analyzed by gas chromatography–mass spectrometry. Source rocks were highly mature at the gas generation stage with vitrinite reflectance (Ro) of 1.45–1.88%. However, the oil produced from the shale reservoir was characterized by abundant biomarkers but low abundance of diamondoid hydrocarbons with estimated Ro of ca. 0.78%, indicating hydrocarbons were still at a relatively low thermal maturity level. As the crude oil was generated and accumulated autochthonously, preliminary results indicate that crude oil and source rocks witnessed differential thermal evolution and significant disparity of the current thermal maturity in the shale reservoir due to rapid tectonic subsidence and clay mineral catalysts that accelerated the thermal maturation process. Although tectonic uplifts occurred afterwards, the vitrinite recorded the highest maturity that source rocks have ever reached, whereas the oil has not reached the same maturity level due to less impact from thermal alteration or mineral catalysis than source rocks in the shale reservoir. Such a discovery enlarges the hydrocarbon perseveration of maturity ranges in reservoirs, particularly for the unconventional tight formation, and benefits potential hydrocarbon exploration from highly mature sediments.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3