Possibilities of Using Inland Navigation to Improve Efficiency of Urban and Interurban Freight Transport with the Use of the River Information Services (RIS) System—Case Study

Author:

Durajczyk PiotrORCID,Drop NataliaORCID

Abstract

Inland navigation is hardly ever used to transport cargo in cities. In most urban areas, it is performed almost exclusively via road transport, with the virtual exclusion of rail and inland transport. Research and implementation projects in several European cities have shown that employing inland navigation is a viable alternative for road transport in urban areas. The research involved a case study of transporting the same number of 40-foot containers by inland waterway and road and then comparing the results in terms of transport time, transport costs, and carbon dioxide emissions between two metropolitan areas in Poland. The article shows that River Information Services (RIS) system can contribute to improving freight transport efficiency not only on longer routes, but also in urban and inter-urban conditions. The findings were that inland shipping is much cheaper and more environmentally friendly, but transport takes much longer and is not always possible due to insufficient waterway infrastructure. The paper can be used as a road map to proceed with new approach to planning urban and inter-urban logistics, with the use of inland navigation supported by the RIS system. The study delivers evidence that the main benefits of using RIS for urban logistics are: optimization of the cargo route, improved supervision and control of cargo transport, optimization of inter-branch transport, optimization of the use of fleet, more efficient use of technical infrastructure of waterways, combination of many recipients/senders into one transport, and reduction of administrative barriers.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3