Quantitative Performance Comparison of Thermal Structure Function Computations

Author:

Ziegeler Nils J.ORCID,Nolte Peter W.ORCID,Schweizer StefanORCID

Abstract

The determination of thermal structure functions from transient thermal measurements using network identification by deconvolution is a delicate process as it is sensitive to noise in the measured data. Great care must be taken not only during the measurement process but also to ensure a stable implementation of the algorithm. In this paper, a method is presented that quantifies the absolute accuracy of network identification on the basis of different test structures. For this purpose, three measures of accuracy are defined. By these metrics, several variants of network identification are optimized and compared against each other. Performance in the presence of noise is analyzed by adding Gaussian noise to the input data. In the cases tested, the use of a Bayesian deconvolution provided the best results.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic in-situ measurement of thermal resistance for GaN HEMTs;Microelectronics Journal;2024-07

2. Tridiagonal Approaches for Network Identification by Deconvolution;2023 29th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC);2023-09-27

3. Accuracy Comparison of T3ster-Master and Optimization-based Network Identification;2023 29th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC);2023-09-27

4. J-Fraction Approach for Calculating Thermal Structure Functions;2022 28th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC);2022-09-28

5. Thermographic network identification for transient thermal heat path analysis;Quantitative InfraRed Thermography Journal;2022-02-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3