Indoor Thermal Environment Challenges of Light Steel Framing in the Southern European Context

Author:

Roque Eduardo,Vicente Romeu,Almeida Ricardo M. S. F.

Abstract

Over the past decades, Southern European residential architecture has been typically associated with heavyweight hollow brick masonry and reinforced concrete construction systems; however, more industrialised alternative systems have been gaining a significant market share, such as the light steel framing (LSF). Regardless of the proliferation of LSF buildings, a lack of experimental research studies have been performed on this construction system in terms of the indoor thermal environment and thermal comfort in the Southern European climate context. Moreover, a research gap also exists regarding experimental comparisons with typical brick masonry buildings. The present study focused on this research gap by characterising and comparing the performance of these two construction systems. A long-term experimental campaign was carried out, involving the construction and monitoring of two identical test cells, differing only by construction system. The test cells were located in Portugal and were monitored over an entire year. The results revealed that the LSF experimental test cell presented higher daily indoor air temperature fluctuations, leading to more extreme maximum and minimum values, closely following the outdoor dry bulb temperature variations. The more responsive behaviour was also reflected in the indoor thermal comfort analysis, with the LSF cell presenting slightly worse performance; however, some advantages were also observed regarding the LSF construction system, which could provide benefits during intermittent residential occupation, especially in mild climates, in which overheating is not a major concern.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3