Author:
Sun Liyan,Luo Kun,Fan Jianren
Abstract
The production of synthetic natural gas (SNG) via methanation has been demonstrated by experiments in bench scale bubbling fluidized bed reactors. In the current work, we focus on the scale-up of the methanation reactor, and a circulating fluidized bed (CFB) is designed with variable diameter according to the characteristic of methanation. The critical issue is the removal of reaction heat during the strongly exothermic process of the methanation. As a result, an interconnected bubbling fluidized bed (BFB) is utilized and connected with the reactor in order to cool the particles and to maintain system temperature. A 3D model is built, and the influences of operating temperature on H2, CO conversion and CH4 yield are evaluated by numerical simulations. The instantaneous and time-averaged flow behaviors are obtained and analyzed. It turns out that the products with high concentrations of CH4 are received at the CFB reactor outlet. The temperature of the system is kept under control by using a cooling unit, and the steady state of thermal behavior is achieved under the cooling effect of BFB reactor. The circulating rate of particles and the cooling power of the BFB reactor significantly affect the performance of reactor. This investigation provides insight into the design and operation of a scale-up methanation reactor, and the feasibility of the CFB reactor for the methanation process is confirmed.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献