Adsorption of Pyrethroids in Water by Calcined Shell Powder: Preparation, Characterization, and Mechanistic Analysis

Author:

Ma Xiaohan12,Tao Siyuan3,Fu Shiqian12,Yang Huicheng4,Lin Bangchu5,Lou Yongjiang12,Li Yongyong12

Affiliation:

1. Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China

2. Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China

3. Hangzhou Yuhang Food and Drug Monitoring & Testing Center, Hangzhou 311112, China

4. Zhejiang Marine Development Research Institute, Zhoushan 316021, China

5. Zhejiang Yulin Technology Co., Ltd., Ningbo 315021, China

Abstract

Pyrethroids are common contaminants in water bodies. In this study, an efficient mussel shell-based adsorbent was prepared, the effects of factors (calcination temperature, calcination time, and sieved particle size) on the pyrethroid adsorption capacity from calcined shell powder were investigated via Box–Behnken design, and the prediction results of the model were verified. By characterizing (scanning electron microscopy, X-ray diffraction, Fourier infrared spectroscopy, and Brunauer–Emmett–Teller measurements) the adsorbent before and after the optimized preparation process, the results showed that calcined shell powder had a loose and porous structure, and the main component of the shell powder under optimized condition was calcium oxide. The adsorption mechanism was also investigated, and the analysis of adsorption data showed that the Langmuir, pseudo second-order, and intra-particle diffusion models were more suitable for describing the adsorption process. The adsorbent had good adsorption potential for pyrethroids, the adsorption capacity of the two pesticides was 1.05 and 1.79 mg/g, and the removal efficiency was over 40 and 70% at the maximum initial concentration, respectively.

Funder

National Key R&D Program of China

Science Foundation of Donghai Laboratory

Zhoushan Science and Technology Plan Project

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3