Theoretical Prediction of the Sublimation Behavior by Combining Ab Initio Calculations with Statistical Mechanics

Author:

Hu Yang1ORCID,Wang Kai1,Müller Michael1ORCID,Wessel Egbert1,Spatschek Robert12ORCID

Affiliation:

1. Institute of Energy and Climate Research IEK-2, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany

2. JARA Energy, 52428 Jülich, Germany

Abstract

We develop a theoretical model to predict the sublimation vapor pressure of pure substances. Moreover, we present a simple monoatomic molecule approximation, which reduces the complexity of the vapor pressure expression for polyatomic gaseous molecules at a convincing level of accuracy, with deviations of the Arrhenius prefactor for NaCl and NaF being 5.02% and 7.08%, respectively. The physical model is based on ab initio calculations, statistical mechanics, and thermodynamics. We illustrate the approach for Ni, Cr, Cu (metallic bond), NaCl, NaF, ZrO2 (ionic bond) and SiO2 (covalent bond). The results are compared against thermodynamic databases, which show high accuracy of our theoretical predictions, and the deviations of the predicted sublimation enthalpy are typically below 10%, for Cu even only 0.1%. Furthermore, the partial pressures caused by gas phase reactions are also explored, showing good agreement with experimental results.

Funder

German Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

General Materials Science

Reference29 articles.

1. Sublimation thermodynamics of pyrazinoic, dipicolinic and quinolinic acids: Experiment and theoretical prediction;Drozd;J. Chem. Thermodyn.,2021

2. Thermodynamic perspective of Sr-related degradation issues in SOFCs;Yin;Int. J. Appl. Ceram. Technol.,2018

3. Thermochemical stability of Fe- and Co-functionalized perovskite-type SrTiO3 oxygen transport membrane materials in syngas conditions;Liu;J. Eur. Ceram. Soc.,2019

4. Vaporization behavior of Na2CO3 and K2CO3;Sergeev;Calphad,2019

5. Vaporization of Ni, Al and Cr in Ni-Base alloys and its influence on surface defect formation during manufacturing of single-crystal components;Dong;Metall. Mater. Trans. A,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3