Improving the Photocatalytic Activity of Ti3C2 MXene by Surface Modification of N Doped

Author:

Cui Lidan1,Wen Jianfeng1,Deng Quanhao1,Du Xin1,Tang Tao1ORCID,Li Ming1,Xiao Jianrong1ORCID,Jiang Li1ORCID,Hu Guanghui1,Cao Xueli1,Yao Yi2

Affiliation:

1. Key Laboratory of Low-Imensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, College of Science, Guilin University of Technology, Guilin 541000, China

2. Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Areas, College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541000, China

Abstract

Methyl orange dye (MO) is one of the azo dyes, which is not only difficult to degrade but also hazardous to human health, therefore, it is necessary to develop an efficient photocatalyst to degrade MO. In this paper, a facile and low-cost elemental doping method was used for the surface modification of Ti3C2 MXene, i.e., nitrogen-doped titanium carbide was used as the nitrogen source, and the strategy of combining solvent heat treatment with non-in situ nitrogen doping was used to prepare N-Ti3C2 MXene two-dimensional nanomaterials with high catalytic activity. It was found that the catalytic efficiency of N-Ti3C2 MXene materials was enhanced and improved compared to the non-doped Ti3C2 MXene. In particular, N-Ti3C2 1:8 MXene showed the best photo-catalytic ability, as demonstrated by the fact that the N-Ti3C2 1:8 MXene material successfully degraded 98.73% of MO (20 mg/L) under UV lamp irradiation for 20 min, and its catalytic efficiency was about ten times that of Ti3C2 MXene, and the N-Ti3C2 photo-catalyst still showed good stability after four cycles. This work shows a simplified method for solvent heat-treating non-in situ nitrogen-doped Ti3C2 MXene, and also elaborates on the photo-catalytic mechanism of N-Ti3C2 MXene, showing that the high photo-catalytic effect of N-Ti3C2 MXene is due to the synergistic effect of its efficient charge transfer and surface-rich moieties. Therefore, N-Ti3C2 MXene has a good prospect as a photo-catalyst in the photocatalytic degradation of organic pollutants.

Funder

Guangxi Graduate Education Innovation Project

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3