Benefit Sharing of Power Transactions in Distributed Energy Systems with Multiple Participants

Author:

Dong Jun1,Dou Xihao1,Liu Dongran1,Bao Aruhan1ORCID,Wang Dongxue2,Zhang Yunzhou1,Jiang Peng1ORCID

Affiliation:

1. School of Economics and Management, North China Electric Power University, Beijing 102206, China

2. School of Economics and Management, Wuhan University, Wuhan 430072, China

Abstract

With the rapid advancement of China’s power system reform, various provinces have progressively recognized distributed energy systems as autonomous market participants, and their operational paradigm has transitioned from centralized procurement and sales to market competition. This paradigm shift has presented novel demands for the operational efficacy of distributed energy systems within the power market. Presently, China’s distributed energy systems are predominantly managed through collaborative efforts among multiple enterprises. Consequently, during the operational process, it becomes imperative to contemplate how to achieve efficient benefit allocation to ensure the system’s sustainable development. This endeavor also represents a pivotal undertaking in China’s pursuit of its dual-carbon objectives. Therefore, this study endeavors to construct a model for benefit sharing within distributed energy systems, predicated on the distinctive attributes of various stakeholders, in order to facilitate the system’s sustainable progression. Primarily, from the vantage point of the power market and the conduct of system stakeholders, this research scrutinizes key factors that influence benefit allocation, encompassing risk level, profit contribution, and predictive elements. Subsequently, utilizing the CIRTIC anti-entropy weight method Cloud–Shapley methodology, a benefit allocation model is formulated for multiple stakeholders participating in the distributed energy systems market. Finally, the efficacy of the model is substantiated through the simulation and analysis of core stakeholders within the distributed energy system. Simulation results manifest the actual allocation benefits for micro-gas turbines, wind power, and photovoltaics, which amount to CNY 0.941 million, CNY 0.858 million, and CNY 0.881 million, respectively. Moreover, the impacts of risk level, profit contribution, and prediction vary in magnitude concerning the benefit distribution among distinct stakeholders. In future endeavors encompassing post-operational benefit sharing in regional distributed energy systems, it is indispensable to consider the varying influence of different factors on stakeholders, as well as the significance of stakeholders within the system.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3