Multistep Wind Power Prediction Using Time-Varying Filtered Empirical Modal Decomposition and Improved Adaptive Sparrow Search Algorithm-Optimized Phase Space Reconstruction–Echo State Network

Author:

Tan Chao1ORCID,Tan Wenrui2ORCID,Shen Yanjun1,Yang Long1

Affiliation:

1. School of Electrical and New Energy, China Three Gorges University, Yichang 443000, China

2. Hubei Provincial Research Center on Microgrid Engineering Technology, China Three Gorges University, Yichang 443000, China

Abstract

Accurate wind power prediction is vital for improving grid stability. In order to improve the accuracy of wind power prediction, in this study, a hybrid prediction model combining time-varying filtered empirical modal decomposition (TVFEMD), improved adaptive sparrow search algorithm (IASSA)-optimized phase space reconstruction (PSR) and echo state network (ESN) methods was proposed. First, the wind power data were decomposed into a set of subsequences by using TVFEMD. Next, PSR was used to construct the corresponding phase space matrix for sequences, which were then divided into training sets, validation sets, and testing sets. Then, ESN was used for subsequence prediction. Finally, the predicted values of all the subseries were used to determine the final predicted power. To enhance the model performance, the sparrow search algorithm was improved in terms of the discoverer position update strategy, the follower position update strategy, and the population structure. IASSA was employed to synchronously optimize multiple parameters of PSR-ESN. The results revealed that the proposed model has higher applicability and prediction accuracy than existing models.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3