As-Doped h-BN Monolayer: A High Sensitivity and Short Recovery Time SF6 Decomposition Gas Sensor

Author:

Long YunfengORCID,Xia Sheng-YuanORCID,Guo Liang-Yan,Tan YaxiongORCID,Huang Zhengyong

Abstract

SF6 is a common insulating medium of gas-insulated switchgear (GIS). However, it is inevitable that SF6 will be decomposed due to partial discharge (PD) in GIS, which will cause hidden dangers to the safe and stable operation of equipment. Based on the DFT method, the two-dimensional nano-composite As-doped h-BN (As-BN) monolayer was proposed. By modeling and calculating, the ability of an As-BN monolayer as a specific sensor for SO2F2 (compared with an H2O adsorption system and CO2 adsorption system) was evaluated by parameters such as the binding energy (Eb), adsorption energy (Eads), transfer charge (ΔQ), geometric structure parameters, the total density of states (TDOS), band structure, charge difference density (CDD), electron localization function (ELF), sensitivity (S), and recovery time (τ). The results showed that an As-BN monolayer showed strong adsorption specificity, high sensitivity, and short recovery time for SO2F2 gas molecules. Therefore, the As-BN monolayer sensor has great application potential in the detection of SF6 decomposition gases.

Funder

Yaxiong Tan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3