Affiliation:
1. Nuclear Futures Institute, Bangor University, Dean Str., Gwynedd, Bangor LL57 1UT, UK
Abstract
With the ever-increasing role that nuclear power is playing to meet the aim of net zero carbon emissions, there is an intensified demand for understanding the thermal hydraulic phenomena at the heart of current and future reactor concepts. In response to this demand, the development of high-resolution flow analysis instrumentation is of increased importance. One such under-utilised and under-researched instrumentation technology, in the context of fluid flow analysis, is fibre Bragg grating (FBG)-based sensors. This technology allows for the construction of simple, minimally invasive instruments that are resistant to high temperatures, high pressures and corrosion, while being adaptable to measure a wide range of fluid properties, including temperature, pressure, refractive index, chemical concentration, flow rate and void fraction—even in opaque media. Furthermore, concertinaing FBG arrays have been developed capable of reconstructing 3D images of large phase structures, such as bubbles in slug flow, that interact with the array. Currently a significantly under-explored application, FBG-based instrumentation thus shows great potential for utilisation in experimental thermal hydraulics; expanding the available flow characterisation and imaging technologies. Therefore, this paper will present an overview of current FBG-based flow characterisation technologies, alongside a systematic review of how these techniques have been utilised in nuclear thermal hydraulics experiments. Finally, a discussion will be presented regarding how these techniques can be further developed and used in nuclear research.
Funder
Welsh European Funding Office
Worshipful Company of Drapers
EPSRC Nuclear Energy Futures Centre
Reference110 articles.
1. Nuclear Energy Agency (2022). Meeting Climate Change Targets: The Role of Nuclear Energy, OECD Publishing. Technical Report.
2. A historical review and analysis on the selection of nuclear reactor types and implications to development programs for advanced reactors; A Japanese study;Murakami;Energy Rep.,2021
3. Understanding dry-out mechanism in rod bundles of boiling water reactor;Silvi;Int. J. Heat Mass Transf.,2021
4. Todreas, N.E., and Kazimi, M.S. (2021). Nuclear Systems Volume I: Thermal Hydraulic Fundamentals, CRC Press.
5. Beck, W., Blanpain, P., Fuketa, T., Gorzel, A., Hozer, Z., Kamimura, K., Koo, Y.H., Maertens, D., Nechaeva, O., and Petit, M. (2012). Nuclear Fuel Safety Criteria Technical Review, OECD/NEA Publishing. [2nd ed.].