Research on the Reconstruction of Aquatic Vegetation Landscape in Coal Mining Subsidence Wetlands Based on Ecological Water Level

Author:

Luo Pingjia1,Zhang Mengchu1,Zhou Shiyuan1

Affiliation:

1. School of Architecture and Design, China University of Mining and Technology, Xuzhou 221116, China

Abstract

The eastern region of the Huang-Huai area is vital for China’s coal production, with high water table mining causing significant surface subsidence and the formation of interconnected coal mining subsidence wetlands. Restoring these wetlands is crucial for biodiversity, environmental quality, and sustainable development. Aquatic vegetation plays a crucial role in wetland ecosystems, underscoring its importance in restoration efforts. Understanding and managing water level fluctuations is essential due to their impact on vegetation. This study examines the Qianshiliying coal mining subsidence wetland in the Yanzhou Mining Area, China, with the goal of devising a water level regulation plan based on the minimum ecological water level to improve the growth and recovery of aquatic vegetation. The research delves into landscape ecological restoration techniques for aquatic vegetation in coal mining subsidence wetlands in the eastern Huang-Huai region, emphasizing the importance of water level management. The results reveal that the minimum ecological water level in the Qianshiliying coal mining subsidence wetland is 32.50 m, and an area of 78.09 hectares is suitable for the reconstruction of aquatic vegetation. This paper utilizes lake morphology, minimum biological space, and water level demand methods for aquatic plants in the landscape to promote restoration of coal mining subsidence wetlands. A notable strength of this approach is its ability to quantitatively predict the survival range and area of aquatic vegetation in these wetlands, enabling a more scientifically informed restoration of ecological balance and promoting landscape ecological restoration in the eastern Huang-Huai region.

Funder

Study on urban resilience spatial planning to cope with the hydrological effects of coal mining subsidence and urbanization

Publisher

MDPI AG

Reference48 articles.

1. The influence and comprehensive improvement of the surface subsidence on the environment;Li;Environ. Sci.,1988

2. Preliminary study on the dynamic process of goaf subsidence wetland formation;Bian;Wetl. Sci.,2007

3. Seasonal characteristics of groundwater discharge controlled by precipitation and its environmental effects in a coal mining subsidence lake, eastern China;Jiang;Sci. Total Environ.,2024

4. Zhou, S. (2020). Study on the Evaluation and Forewarning of Wetland Landscape Ecological Security for the Col Resource-Based Cities Based on Scenario Simulation. [Ph.D. Thesis, China University of Mining and Technology].

5. Study on rain-flood resources comprehensive utilization and ecological restoration technology of coal mining depressed area;Wang;J. Nat. Resour.,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3