Neurotrophin Analog ENT-A044 Activates the p75 Neurotrophin Receptor, Regulating Neuronal Survival in a Cell Context-Dependent Manner

Author:

Papadopoulou Maria Anna12ORCID,Rogdakis Thanasis12ORCID,Charou Despoina12,Peteinareli Maria12,Ntarntani Katerina12,Gravanis Achille12ORCID,Chanoumidou Konstantina12ORCID,Charalampopoulos Ioannis12ORCID

Affiliation:

1. Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece

2. Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece

Abstract

Neuronal cell fate is predominantly controlled based on the effects of growth factors, such as neurotrophins, and the activation of a variety of signaling pathways acting through neurotrophin receptors, namely Trk and p75 (p75NTR). Despite their beneficial effects on brain function, their therapeutic use is compromised due to their polypeptidic nature and blood–brain-barrier impermeability. To overcome these limitations, our previous studies have proven that DHEA-derived synthetic analogs can act like neurotrophins, as they lack endocrine side effects. The present study focuses on the biological characterization of a newly synthesized analog, ENT-A044, and its role in inducing cell-specific functions of p75NTR. We show that ENT-A044 can induce cell death and phosphorylation of JNK protein by activating p75NTR. Additionally, ENT-A044 can induce the phosphorylation of TrkB receptor, indicating that our molecule can activate both neurotrophin receptors, enabling the protection of neuronal populations that express both receptors. Furthermore, the present study demonstrates, for the first time, the expression of p75NTR in human-induced Pluripotent Stem Cells-derived Neural Progenitor Cells (hiPSC-derived NPCs) and receptor-dependent cell death induced via ENT-A044 treatment. In conclusion, ENT-A044 is proposed as a lead molecule for the development of novel pharmacological agents, providing new therapeutic approaches and research tools, by controlling p75NTR actions.

Funder

European Union’s Horizon

Hellenic Foundation

Greece and the European Union

Ministry of Development and Investment and the General Secretariat for Research and Innovation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3