A 43 Bp-Deletion in the F3′H Gene Reducing Anthocyanins Is Responsible for Keeping Buds Green at Low Temperatures in Broccoli

Author:

Yu Huifang1,Wang Jiansheng1,Shen Yusen1,Sheng Xiaoguang1,Shaw Ranjan Kumar1,Branca Ferdinando2ORCID,Gu Honghui1

Affiliation:

1. Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China

2. Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy

Abstract

Most broccoli cultivars or accessions exhibit green buds under appropriate growth conditions, which turn purple at cold temperatures. However, certain cultivars consistently maintain green buds both during normal growth and at cold temperatures. In this study, we used BSA-seq (bulked segregation analysis-sequencing), along with fine mapping and transcriptome analysis to identify a candidate gene (flavonoid 3′-hydroxylase, F3′H) responsible for reducing anthocyanin accumulation in the mutant GS and HX-16 broccoli (Brassica oleracea L. var. italica), which could retain green buds even at low temperatures. A 43-bp deletion was detected in the coding sequence (CDS) of the F3′H gene in HX-16 and the mutant GS, which significantly decreased F3′H expression and the accumulation of cyanidin and delphinidin in the mutant GS. Furthermore, the expression of F3′H was upregulated at low temperatures in the wild line PS. Our results demonstrated the efficacy of utilizing the 43-bp InDel (Insertion–Deletion) in predicting whether buds in B. oleracea L. will turn purple or remain green at cold temperatures across forty-two germplasm materials. This study provides critical genetic and molecular insights for the molecular breeding of B. oleracea and sheds light on the molecular mechanisms underlying the effect of low temperatures on bud color in broccoli.

Funder

Science and Technology Department of Zhejiang Province

Natural Science Foundation of Zhejiang Province

European Union’s Horizon 2020 research and innovation program

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3