In Silico Comparative Genomic Analysis Revealed a Highly Conserved Proteolytic System in Lactobacillus delbrueckii

Author:

Elean Mariano1,Albarracin Leonardo1ORCID,Villena Julio1ORCID,Kitazawa Haruki23ORCID,Saavedra Lucila1,Hebert Elvira M.1ORCID

Affiliation:

1. Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán 4000, Argentina

2. Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan

3. Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan

Abstract

Lactobacillus delbrueckii, the type species of the genus Lactobacillus, is widely recognized as the primary starter culture in the dairy industry due to its proteolytic activity, which enables it to growth in milk. In this study, a comprehensive genomic analysis of the proteolytic system was conducted on L. delbrueckii strains. The analysis included 27 genomes of L. delbrueckii, with a specific focus on the key enzyme involved in this system, the cell envelope-associated proteinase (CEP). The amino acid sequences, as well as the protein-structure prediction of the CEPs, were compared. Additionally, syntenic analysis of the genomic locus related to the CEPs revealed high conservation in L. delbrueckii subsp. bulgaricus strains, while L. delbrueckii subsp. lactis strains exhibited greater variability, including the presence of insertion sequences, deletions, and rearrangements. Finally, the CEP promoter region and putative regulatory elements responsible for controlling the expression of the proteolytic system in lactobacilli were investigated. Our genomic analysis and in silico characterization of the CEPs contribute to our understanding of proteolytic activity and the potential applications of these lactic acid bacteria in the dairy industry. Further research in this area will expand our knowledge and potential practical uses of these findings.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3