AhRR and PPP1R3C: Potential Prognostic Biomarkers for Serous Ovarian Cancer

Author:

Ardizzoia Alessandra1,Jemma Andrea1,Redaelli Serena1ORCID,Silva Marco1,Bentivegna Angela1ORCID,Lavitrano Marialuisa1ORCID,Conconi Donatella1ORCID

Affiliation:

1. School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy

Abstract

The lack of effective screening and successful treatment contributes to high ovarian cancer mortality, making it the second most common cause of gynecologic cancer death. Development of chemoresistance in up to 75% of patients is the cause of a poor treatment response and reduced survival. Therefore, identifying potential and effective biomarkers for its diagnosis and prognosis is a strong critical need. Copy number alterations are frequent in cancer, and relevant for molecular tumor stratification and patients’ prognoses. In this study, array-CGH analysis was performed in three cell lines and derived cancer stem cells (CSCs) to identify genes potentially predictive for ovarian cancer patients’ prognoses. Bioinformatic analyses of genes involved in copy number gains revealed that AhRR and PPP1R3C expression negatively correlated with ovarian cancer patients’ overall and progression-free survival. These results, together with a significant association between AhRR and PPP1R3C expression and ovarian cancer stemness markers, suggested their potential role in CSCs. Furthermore, AhRR and PPP1R3C’s increased expression was maintained in some CSC subpopulations, reinforcing their potential role in ovarian cancer. In conclusion, we reported for the first time, to the best of our knowledge, a prognostic role of AhRR and PPP1R3C expression in serous ovarian cancer.

Funder

University of Milano-Bicocca

Ministero dell’Istruzione, dell’Universita’ e della Ricerca (M.I.U.R.)—Progetto PRIN 2017

Instand-NGS4P H2020

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-Coding RNAs of Mitochondrial Origin: Roles in Cell Division and Implications in Cancer;International Journal of Molecular Sciences;2024-07-08

2. Cancer Stem Cells from Definition to Detection and Targeted Drugs;International Journal of Molecular Sciences;2024-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3