Effect of Substituents on Molecular Reactivity during Lignin Oxidation by Chlorine Dioxide: A Density Functional Theory Study

Author:

Liu Baojie1ORCID,Liu Lu1,Qin Xin1,Liu Yi1ORCID,Yang Rui1,Mo Xiaorong1,Qin Chengrong1,Liang Chen1,Yao Shuangquan1ORCID

Affiliation:

1. Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China

Abstract

Lignin is a polymer with a complex structure. It is widely present in lignocellulosic biomass, and it has a variety of functional group substituents and linkage forms. Especially during the oxidation reaction, the positioning effect of the different substituents of the benzene ring leads to differences in lignin reactivity. The position of the benzene ring branched chain with respect to methoxy is important. The study of the effect of benzene substituents on the oxidation reaction’s activity is still an unfinished task. In this study, density functional theory (DFT) and the m062x/6-311+g (d) basis set were used. Differences in the processes of phenolic oxygen intermediates formed by phenolic lignin structures (with different substituents) with chlorine dioxide during the chlorine dioxide reaction were investigated. Six phenolic lignin model species with different structures were selected. Bond energies, electrostatic potentials, atomic charges, Fukui functions and double descriptors of lignin model substances and reaction energy barriers are compared. The effects of benzene ring branched chains and methoxy on the mechanism of chlorine dioxide oxidation of lignin were revealed systematically. The results showed that the substituents with shorter branched chains and strong electron-absorbing ability were more stable. Lignin is not easily susceptible to the effects of chlorine dioxide. The substituents with longer branched chains have a significant effect on the flow of electron clouds. The results demonstrate that chlorine dioxide can affect the electron arrangement around the molecule, which directly affects the electrophilic activity of the molecule. The electron-absorbing effect of methoxy leads to a low dissociation energy of the phenolic hydroxyl group. Electrophilic reagents are more likely to attack this reaction site. In addition, the stabilizing effect of methoxy on the molecular structure of lignin was also found.

Funder

National Natural Science Foundation of China

Guangxi Natural Science Foundation of China

Innovation Project of Guangxi Graduate Education

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3