Choosing Variant Interpretation Tools for Clinical Applications: Context Matters

Author:

Aguirre Josu1ORCID,Padilla Natàlia1,Özkan Selen1,Riera Casandra1,Feliubadaló Lídia23ORCID,de la Cruz Xavier14ORCID

Affiliation:

1. Research Unit in Clinical and Translational Bioinformatics, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, P/Vall d’Hebron, 119-129, 08035 Barcelona, Spain

2. Hereditary Cancer Program, Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Catalan Institute of Oncology, 08908 L’Hospitalet de Llobregat, Spain

3. Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28929 Madrid, Spain

4. Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain

Abstract

Pathogenicity predictors are computational tools that classify genetic variants as benign or pathogenic; this is currently a major challenge in genomic medicine. With more than fifty such predictors available, selecting the most suitable tool for clinical applications like genetic screening, molecular diagnostics, and companion diagnostics has become increasingly challenging. To address this issue, we have developed a cost-based framework that naturally considers the various components of the problem. This framework encodes clinical scenarios using a minimal set of parameters and treats pathogenicity predictors as rejection classifiers, a common practice in clinical applications where low-confidence predictions are routinely rejected. We illustrate our approach in four examples where we compare different numbers of pathogenicity predictors for missense variants. Our results show that no single predictor is optimal for all clinical scenarios and that considering rejection yields a different perspective on classifiers.

Funder

Spanish Ministerio de Economía y Competitividad

Spanish Ministerio de Ciencia e Innovación

European Regional Development Fund

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference49 articles.

1. Lázaro, C., Lerner-Ellis, J., and Spurdle, A. (2021). Clinical DNA Variant Interpretation, Academic Press. [1st ed.].

2. Genomic Medicine–Progress, Pitfalls, and Promise;Shendure;Cell,2019

3. The Human Gene Mutation Database (HGMD®): Optimizing Its Use in a Clinical Diagnostic or Research Setting;Stenson;Hum. Genet.,2020

4. Lázaro, C., Lerner-Ellis, J., and Spurdle, A. (2021). Clinical DNA Variant Interpretation: Theory and Practice, Elsevier Inc./Academic Press.

5. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology;Richards;Genet. Med.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3