Synthetic Thioesters of Thiamine: Promising Tools for Slowing Progression of Neurodegenerative Diseases

Author:

Bettendorff Lucien1ORCID

Affiliation:

1. Laboratory of Neurophysiology, GIGA Neurosciences, University of Liège, 4000 Liège, Belgium

Abstract

Thiamine (vitamin B1) is essential for the brain. This is attributed to the coenzyme role of thiamine diphosphate (ThDP) in glucose and energy metabolism. The synthetic thiamine prodrug, the thioester benfotiamine (BFT), has been extensively studied and has beneficial effects both in rodent models of neurodegeneration and in human clinical studies. BFT has no known adverse effects and improves cognitive outcomes in patients with mild Alzheimer’s disease. In cell culture and animal models, BFT has antioxidant and anti-inflammatory properties that seem to be mediated by a mechanism independent of the coenzyme function of ThDP. Recent in vitro studies show that another thiamine thioester, O,S-dibenzoylthiamine (DBT), is even more efficient than BFT, especially with respect to its anti-inflammatory potency, and is effective at lower concentrations. Thiamine thioesters have pleiotropic properties linked to an increase in circulating thiamine concentrations and possibly in hitherto unidentified open thiazole ring derivatives. The identification of the active neuroprotective metabolites and the clarification of their mechanism of action open extremely promising perspectives in the field of neurodegenerative, neurodevelopmental, and psychiatric conditions. The present review aims to summarize existing data on the neuroprotective effects of thiamine thioesters and give a comprehensive account.

Funder

Fonds de la Recherche Scientifique—FNRS

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3