Cyanocobalamin-Modified Colistin–Hyaluronan Conjugates: Synthesis and Bioactivity

Author:

Dubashynskaya Natallia V.1ORCID,Bokatyi Anton N.1ORCID,Sall Tatiana S.2,Egorova Tatiana S.3,Nashchekina Yuliya A.4,Dubrovskii Yaroslav A.5ORCID,Murashko Ekaterina A.5ORCID,Vlasova Elena N.1,Demyanova Elena V.3,Skorik Yury A.1ORCID

Affiliation:

1. Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russia

2. Institute of Experimental Medicine, Acad. Pavlov St. 12, St. Petersburg 197376, Russia

3. State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St. Petersburg 197110, Russia

4. Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, St. Petersburg 194064, Russia

5. Almazov National Medical Research Centre, Akkuratova 2, St. Petersburg 197341, Russia

Abstract

Polymeric drug delivery systems enhance the biopharmaceutical properties of antibiotics by increasing their bioavailability, providing programmable and controlled-release properties, and reducing toxicity. In addition, drug delivery systems are a promising strategy to improve the intestinal permeability of various antimicrobial agents, including colistin (CT). This study describes the modification of conjugates based on CT and hyaluronic acid (HA) with cyanocobalamin (vitamin B12). Vitamin B12 was chosen as a targeting ligand because it has its own absorption pathway in the small intestine. The resulting polysaccharide conjugates contained 95 μg/mg vitamin B12 and the CT content was 335 μg/mg; they consisted of particles of two sizes, 98 and 702 nm, with a ζ-potential of approximately −25 mV. An in vitro release test at pH 7.4 and pH 5.2 showed an ultra-slow release of colistin of approximately 1% after 10 h. The modified B12 conjugates retained their antimicrobial activity at the level of pure CT (minimum inhibitory concentration was 2 μg/mL). The resulting delivery systems also reduced the nephrotoxicity of CT by 30–40% (HEK 293 cell line). In addition, the modification of B12 improved the intestinal permeability of CT, and the apparent permeability coefficient of HA–CT–B12 conjugates was 3.5 × 10−6 cm/s, corresponding to an in vivo intestinal absorption of 50–100%. Thus, vitamin-B12-modified conjugates based on CT and HA may be promising oral delivery systems with improved biopharmaceutical properties.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3