Short Double-Stranded DNA (≤40-bp) Affects Repair Pathway Choice

Author:

Li Zhentian1,Wang Ya1

Affiliation:

1. Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA

Abstract

To repair ionizing radiation (IR)-induced double strand breaks (DSBs), mammalian cells primarily use canonical non-homologous end-joining (cNHEJ), the homologous recombination (HR) pathway, and the alternative non-homologous end-joining (aEJ) as a backup. These pathways function either compensatively or competitively. High linear energy transfer (LET) compared to low-LET IR kills more cells at the same doses by inhibiting only cNHEJ, but not HR or aEJ. The mechanism remains unclear. The activation of each repair pathway requires the binding of different proteins to DNA fragments of varying lengths. We previously observed an increased generation of small DNA fragments (≤40 bp) in cells following high-LET IR compared to low-LET IR, suggesting that short DNA fragments were one of the major factors interfering with cNHEJ. To provide direct evidence, here we compare the efficiencies of cNHEJ, HR, or aEJ in repairing DSBs containing 30- or 60-bp fragments in vitro and in cells. We show that only cNHEJ but not HR or a-EJ was inefficient for repairing DSBs with 30-bp fragments compared to 60-bp ones, which strongly supports our hypothesis. These results not only enhance our understanding of the DSB repair pathway choice but also hold potential benefits for protection against high-LET IR-induced damage or improving high-LET radiotherapy.

Funder

NIH

Department of Radiation Oncology, School of Medicine, Emory University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference47 articles.

1. DNA double-strand break repair-pathway choice in somatic mammalian cells;Scully;Nat. Rev. Mol. Cell Biol.,2019

2. Modernizing the nonhomologous end-joining repertoire: Alternative and classical NHEJ share the stage;Deriano;Annu. Rev. Genet.,2013

3. Effects of chromatin decondensation on backup NHEJ;Moscariello;DNA Repair,2013

4. DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation;Difilippantonio;Nature,2000

5. Synergistic role of Ku80 and poly(ADP-ribose) polymerase in suppressing chromosomal aberrations and liver cancer formation;Tong;Cancer Res.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3