Integrative Multi-Omics Analysis of Oncogenic EZH2 Mutants: From Epigenetic Reprogramming to Molecular Signatures

Author:

Aldana Julian12ORCID,Gardner Miranda L.12,Freitas Michael A.12

Affiliation:

1. Ohio State Biochemistry Program, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA

2. Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA

Abstract

Somatic heterozygous mutations in the active site of the enhancer of zeste homolog 2 (EZH2) are prevalent in diffuse large B-cell lymphoma (DLBCL) and acute myeloid leukemia (AML). The methyltransferase activity of EZH2 towards lysine 27 on histone H3 (H3K27) and non-histone proteins is dysregulated by the presence of gain-of-function (GOF) and loss-of-function (LOF) mutations altering chromatin compaction, protein complex recruitment, and transcriptional regulation. In this study, a comprehensive multi-omics approach was carried out to characterize the effects of differential H3K27me3 deposition driven by EZH2 mutations. Three stable isogenic mutants (EZH2Y641F, EZH2A677G, and EZH2H689A/F667I) were examined using EpiProfile, H3K27me3 CUT&Tag, ATAC-Seq, transcriptomics, label-free proteomics, and untargeted metabolomics. A discrete set of genes and downstream targets were identified for the EZH2 GOF and LOF mutants that impacted pathways involved in cellular proliferation, differentiation, and migration. Disruption of protein networks and metabolic signatures able to sustain aberrant cell behavior was observed in response to EZH2 mutations. This systems biology-based analysis sheds light on EZH2-mediated cell transformative processes, from the epigenetic to the phenotypic level. These studies provide novel insights into aberrant EZH2 function along with targets that can be explored for improved diagnostics/treatment in hematologic malignancies with mutated EZH2.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3