Fusion-Assisted Hydrothermal Synthesis of Technogenic-Waste-Derived Zeolites and Nanocomposites: Synthesis, Characterization, and Mercury (II) Adsorption

Author:

Suleimenova Madina12,Zharylkan Saule12ORCID,Mekenova Meruyert12,Mutushev Alibek12ORCID,Azat Seytkhan23ORCID,Tolepova Aidana2,Baimenov Alzhan14ORCID,Satayeva Aliya4ORCID,Tauanov Zhandos12ORCID

Affiliation:

1. Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan

2. LLP Scientific Production Technical Center “Zhalyn”, Almaty 050012, Kazakhstan

3. Laboratory of Engineering Profile, Satbayev University, Almaty 050013, Kazakhstan

4. National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan

Abstract

This study presents the synthesis of zeolites derived from coal fly ash (CFA) using the fusion-assisted alkaline hydrothermal method. The zeolites were synthesized by combining CFA and NaOH at a molar ratio of 1:1.2 under fusion temperatures of 500, 600, and 700 °C. Subsequently, the obtained zeolites were subjected to further modifications through the incorporation of magnetic (Fe3O4) and silver (Ag0) nanoparticles (NPs). The Fe3O4 NPs were introduced through co-precipitation of Fe(NO3)2 and FeCl3 at a molar ratio of 1:1, followed by thermal curing at 120 °C. On the other hand, the Ag0 NPs were incorporated via ion exchange of Na+ with Ag+ and subsequent reduction using NaBH4. The synthesized porous materials exhibited the formation of zeolites, specifically analcime and sodalite, as confirmed by X-ray diffraction (XRD) analysis. Additionally, the presence of Fe3O4 and Ag0 NPs was also confirmed by XRD analysis. The elemental composition analysis of the synthesized nanocomposites further validated the successful formation of Fe3O4 and Ag0 NPs. Nitrogen porosimetric analysis revealed the formation of a microporous structure, with the BET surface area of the zeolites and nanocomposites ranging from 48.6 to 128.7 m2/g and pore sizes ranging from 0.6 to 4.8 nm. The porosimetric characteristics of the zeolites exhibited noticeable changes after the modification process, which can be attributed to the impregnation of Fe3O4 and Ag0 NPs. The findings of this research demonstrate the effectiveness of the fusion-assisted method in producing synthetic zeolites and nanocomposites derived from CFA. The resulting composites were evaluated for their potential application in the removal of mercury ions from aqueous solutions. Among the samples tested, the composite containing Ag0 NPs exhibited the highest adsorption capacity, reaching 107.4 mg of Hg2+ per gram of composite. The composites modified with Fe3O4 NPs and Ag/Fe3O4 nanocomposites displayed adsorption capacities of 68.4 mg/g and 71.4 mg/g, respectively.

Funder

Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3