Affiliation:
1. Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
2. Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
3. Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
4. Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China
Abstract
Peri-implantitis requires clinical treatments comprised of mechanical and chemical debridement to remove bacterial biofilms. Bone regeneration on the titanium surface after debridement has been a topical issue of peri-implantitis treatments. Increasing evidence has revealed that the immune microenvironment plays a key role in regulating the bone regeneration process. However, it remains unclear what kind of immune microenvironment the titanium surface induces after debridement. In the study, model titanium surface after debridement was prepared via biofilm induction and mechanical and chemical debridement in vitro. Then, the macrophages and naïve CD4+ T lymphocytes were cultured on the titanium surface after debridement for immune microenvironment evaluation, with the original titanium surface as the control. Next, to regulate the immune microenvironment, 2-DG, a glycolysis inhibitor, was further incorporated to regulate macrophages and CD4+ T lymphocytes at the same time. Surface characterization results showed that the bacterial biofilms were completely removed, while the micro-morphology of titanium surface altered after debridement, and the element composition did not change. Compared with the original titanium disc, titanium surface after debridement can lead to the inflammatory differentiation of macrophages and CD4+ T lymphocytes. The percentage of M1 and Th17 inflammatory cells and the expression of their inflammatory factor genes are upregulated. However, 0.3 mmol of 2-DG can significantly reduce the inflammatory differentiation of both macrophages and CD4+ T lymphocytes and inhibit their expression of inflammatory genes. In conclusion, although bacterial biofilms were removed from titanium surface after debridement, the surface topography changes could still induce immune imbalance and form an inflammatory immune microenvironment. However, this inflammatory immune microenvironment can be effectively reversed by 2-DG in vitro, thus creating an immune microenvironment conducive to osteogenesis, which might provide a new perspective for future therapy of peri-implantitis.
Funder
National Natural Science Foundation of China
Postdoctoral Research Foundation of China
Basic and Applied Basic Research Foundation of Guangdong Province
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis