Development of a Simple Direct and Hot-Start PCR Using Escherichia coli-Expressing Taq DNA Polymerase

Author:

Lee Sun Ju12ORCID,Park Sang-Yong1,Lee Kwang-Ho13,Lee Min-Woo1,Yu Chae-Yeon124,Maeng Jaeyoung124,Kim Hyeong-Dong1,Kim Suhng Wook124ORCID

Affiliation:

1. Department of Health and Safety Convergence Science, Graduate School, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea

2. L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea

3. Department of Laboratory Medicine, ASAN Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea

4. Graduate School of Particulate Matter Specialization, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea

Abstract

Taq DNA polymerases have played an important role in molecular biology for several years and are frequently used for polymerase chain reaction (PCR); hence, there is an increasing interest in developing a convenient method for preparing Taq DNA polymerase for routine use in laboratories. We developed a method using Escherichia coli (E. coli) that expresses thermostable Taq DNA polymerase directly in the PCR without purification. The Taq gene was transformed into E. coli and expressed. After overnight incubation and washing, E. coli-expressing Taq DNA polymerase (EcoliTaq) was used as the DNA polymerase without purification. EcoliTaq showed activity comparable to that of commercial DNA polymerase and remained stable for 3 months. With a high-pH buffer containing 2% Tween 20 and 0.4 M trehalose, EcoliTaq facilitated direct PCR amplification from anticoagulated whole blood samples. EcoliTaq exhibited good performance in allele-specific PCR using both purified DNA and whole blood samples. Furthermore, it proved to be useful as a DNA polymerase in hot-start PCR by effectively minimizing non-specific amplification. We developed a simple and cost-effective direct and hot-start PCR method in which EcoliTaq was used directly as a PCR enzyme, thus eliminating the laborious and time-consuming steps of polymerase purification.

Funder

Korea University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Silver nanoparticles-based localized surface plasmon resonance biosensor for Escherichia coli detection;Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3